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a b s t r a c t

Phase 2 of the Distributed Model Intercomparison Project (DMIP 2) was formulated primarily as a
mechanism to help guide the US National Weather Service (NWS) as it expands its use of spatially dis-
tributed watershed models for operational river, flash flood, and water resources forecasting. The overall
purpose of DMIP 2 was to test many distributed models with operational quality data with a view
towards meeting NWS operational forecasting needs. At the same time, DMIP 2 was formulated as an
experiment that could be leveraged by the broader scientific community as a platform for testing, eval-
uating, and improving the science of spatially distributed models.

This paper presents the key results of the DMIP 2 experiments conducted for the Oklahoma region,
which included comparison of lumped and distributed model simulations generated with uncalibrated
and calibrated parameters, water balance tests, routing and soil moisture tests, and simulations at inte-
rior locations. Simulations from 14 independent groups and 16 models are analyzed. As in DMIP 1, the
participant simulations were evaluated against observed hourly streamflow data and compared with
simulations generated by the NWS operational lumped model. A wide range of statistical measures are
used to evaluate model performance on both run-period and event basis. A noteworthy improvement
in DMIP 2 was the combined use of two lumped models to form the benchmark for event improvement
statistics, where improvement was measured in terms of runoff volume, peak flow, and peak timing for
between 20 and 40 events in each basin.

Results indicate that in general, those spatially distributed models that are calibrated to perform well
for basin outlet simulations also, in general, perform well at interior points whose drainage areas cover a
wide range of scales. Two of the models were able to provide reasonable estimates of soil moisture versus
depth over a wide geographic domain and through a period containing two severe droughts. In several
parent and interior basins, a few uncalibrated spatially distributed models were able to achieve better
goodness-of-fit statistics than other calibrated distributed models, highlighting the strength of those
model structures combined with their a priori parameters. In general, calibration solely at basin outlets
alone was not able to greatly improve relative model performance beyond that established by using
uncalibrated a priori parameters. Further, results from the experiment for returning DMIP 1 participants
reinforce the need for stationary data for model calibration: in some cases, the improvements gained by
distributed models compared to lumped were not realized when the models were calibrated using incon-
sistent precipitation data from DMIP 1. Event-average improvement of distributed models over the com-
bined lumped benchmark was measured in terms of runoff volume, peak flow, and peak timing for
between 20 and 40 events. The percentage of model-basin pairs having positive distributed model
improvement at basin outlets and interior points was 18%, 24%, and 28% respectively, for these quantities.
These values correspond to 14%, 33%, and 22% respectively, in DMIP 1. While there may not seem to be
much gain compared to DMIP 1 results, the DMIP 2 values were based on more precipitation–runoff
events, more model-basin combinations (148 versus 51), more interior ungauged points (9 versus 3),
and a benchmark comprised of two lumped model simulations.

In addition, we propose a set of statistical measures that can be used to guide the calibration of distrib-
uted and lumped models for operational forecasting.
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1. Introduction

The US National Weather Service (NWS) continues to imple-
ment spatially distributed hydrologic models (hereafter called
distributed models) for river, flash flood, and water resources fore-
casting. Since the conclusion of the first Distributed Model Inter-
comparison Project (DMIP 1; Reed et al., 2004; Smith et al.,
2004a), the NWS has implemented a distributed modeling capabil-
ity for basin outlet forecasts (e.g., Jones et al., 2009) as well as for
generating gridded flash flood guidance over large domains
(Schmidt et al., 2007). Indeed, distributed models are now
routinely applied for operational forecasting in many parts of the
world including, for example, Italy (Rabuffetti et al., 2009), Taiwan
(Vieux et al., 2003), and Egypt (Koren and Barrett, 1994).

A companion paper (Smith et al., this issue) explains the moti-
vation for, and design of, the Oklahoma experiments in the second
phase of the Distributed Model Intercomparison Project (DMIP 2).
It also describes the test basins, naming conventions, and data.
Some experiments from DMIP 1 are repeated, albeit with more
consistent radar-based precipitation estimates and with data from
more streamflow gauges at interior points. A notable addition to
DMIP 2 is the experiment designed to evaluate soil moisture
simulations.

1.1. Participating institutions, models, and submissions

Fourteen participating groups submitted simulations for analy-
sis and discussion at a DMIP 2 workshop convened in September,
2007; Table 1 lists the participants and the major characteristics
of their models. Two of the groups (University of Arizona and the
Danish Hydraulic Institute) submitted simulations from two mod-
els so that 16 models were run in DMIP 2 including the NWS
lumped model. The references in Table 1 and the other papers in
this issue provide further background on the specific models. Sev-
eral groups had not participated in DMIP 1 and vice versa. Table 2
lists the participating institutions for both projects.

As with DMIP 1, the level of participation varied. Some partici-
pants submitted all requested simulations, while others submitted
only a subset. Table 3 lists the simulations submitted by each DMIP
2 participant. Seven groups submitted the full set of model stream-
flow simulations: LMP, OHD, NEB, ARS, CEM, VUB, and EMC. The
University of Alberta at Edmonton (UAE) submitted simulations
for the Blue River well after the September, 2007 workshop but
near the January 2008, deadline for the recalibrated results; we
therefore include their simulations as a valuable contribution to
the DMIP 2 results. With the UAE contribution, there were 14
participating groups and 16 models.

1.2. Benchmarks

Three benchmarks (e.g., Seibert, 2001) were used to assess
model performance. Observed hourly streamflow data from the
US Geological Survey (USGS) were used as ‘truth’ and two lumped
models were used to provide hydrologic model benchmarks. The
two models were the Sacramento Soil Moisture Accounting model
(SAC-SMA; Burnash et al., 1973; Burnash, 1995), used by the NWS
as its standard operational rainfall/runoff model (also used in DMIP
1), hereafter referred to as the LMP benchmark, and the GR4J
lumped model contributed by the French participating group
CEMAGREF, hereafter referred to as the CEM benchmark. In addi-
tion, to provide a combined benchmark for computing event
improvement statistics, the LMP and CEM simulations were also
averaged, hereafter called the LMP–CEM benchmark.

1.3. Definitions

As noted in the DMIP 1 discussion by Reed et al. (2004), there is
no widely accepted definition of spatially distributed hydrologic
modeling in the literature. For consistency with the DMIP 1 study,
we therefore adopt the Reed et al. (2004) definition that a distrib-
uted model is one that (1) explicitly accounts for spatial variability
of meteorological forcings and basin physical characteristics and
(2) has the ability to produce simulations at interior points without
explicit calibration at those points; please see Kampf and Burges
(2007) for a detailed discussion of definitions and classifications
regarding distributed hydrologic models.

Further, a parent basin is defined as a watershed for which
explicit calibration is performed using basin outlet observed
streamflow data. In our experiments, these parent basins represent
the typical watershed sizes for which forecasts are generated by
the NWS River Forecast Centers (RFCs). Interior points are locations
within the parent basins where simulations are generated without
explicit calibration. Hereafter, these are referred to as ‘blind’ simu-
lations. Smith et al. (this issue) provide specific instructions on
how the simulations for the parent basins and interior points were
generated.

1.4. Calibration

Participants were free to calibrate their models using strategies
and statistical measures of their choice, this process usually being
model-dependent. As such, DMIP 2 simulations reflect participants’
familiarity with the parameterization and calibration schemes of
their models. Appendix B presents a summary of the calibration
procedures used by the DMIP 2 participants. Additional informa-
tion on parameterization and calibration strategies can be found
in the other papers in this Special Issue.

An initial set of calibrated and uncalibrated simulations was
submitted for analysis and review at the September, 2007 DMIP
2 workshop in Silver Spring, Maryland (MD). During this workshop,
there was considerable discussion on statistical measures deemed
appropriate by the NWS for model calibration. In particular, a deci-
sion was made to avoid using the Nash–Sutcliffe Efficiency statistic
(NSE: Nash and Sutcliffe, 1970) for the evaluation of streamflow
simulations, given that it summarizes model performance relative
to an extremely weak benchmark – the observed mean output
(Schaefli and Gupta, 2007) – and has no basis in underlying hydro-
logic theory (Gupta et al., 2008). Further, Gupta et al. (2009) and
Martinez and Gupta (2010) have subsequently shown that use of
the NSE does not ensure that a model is constrained to reproduce
the mean and variability of the observed data; theoretical decom-
position shows that the modeled water balance can be incorrect
and the flow variability severely underestimated even though the
NSE performance may be very high; for additional comments on
NSE see Jain and Sudheer (2008) and Michel et al. (2006). Discus-
sions consequently focused on the general concepts of fitting the
shape, volume, and timing of observed hydrographs, and eventu-
ally the participants charged the NWS team with specifying three
corresponding statistical calibration measures deemed important
by the NWS for operational forecasting. It was suggested that such
measures would be of great interest to the scientific community. In
light of the specified statistical measures (listed below) partici-
pants were given the opportunity to submit recalibrated model
simulations by the end of January, 2008. The University of Arizona
and Wuhan University submitted recalibrated simulations.

In collaboration with the DMIP 2 participants, the NWS team se-
lected the following two sets of statistical measures: see Appendix
A of Smith et al. (2004a) for the equations.

18 M.B. Smith et al. / Journal of Hydrology 418–419 (2012) 17–48



Table 1
Participating groups and models in the DMIP 2 Oklahoma Region experiments. Note that some participants submitted simulations from more than one model.

Participant and
acronym

Modeling
system
name

Primary reference(s) Primary application Spatial unit for
rainfall–runoff
calculations

Rainfall–runoff/vertical flux model Channel
routing
method

Agricultural
Research Service
(ARS)

SWAT Arnold and Fohrer (2005) Land management/agricultural Hydrologic
response unit
(HRU) (6–7 km2)

Multi-layer soil water balance Muskingum

University of Arizona
(AZ1)

DHM-UA Pokhrel et al. (2008) Streamflow forecasting 16 km2 grid cells SAC-SMA Muskingum

University of Arizona
(AZ2)

HL-RDHM Koren et al. (2004) Streamflow, water resources forecasting 16 km2 grid cells SAC-SMA Kinematic
wave

Danish Hydraulics
Institute (DH1)

Mike 11 Butts et al. (2004) Forecasting, design, water management Subbasins
(�150 km2)

NAM Full dynamic
wave
solution

Danish Hydraulics
Institute (DH2)

Mike SHE Butts et al. (2004) Forecasting, design, water management Grids Various Various

Environmental
Modeling Center
(EMC)

NOAH Land
Surface
Model

<http://
www.emc.ncep.noaa.gov/mmb/
gcp/noahlsm/README_2.2.htm>

Land–atmosphere interactions for climate and weather
prediction models, off-line runs for data assimilation and
runoff prediction

�160 km2 (1/8th
degree grids)

Multi-layer soil water and energy balance Linearized St.
Venant
equation

CEMAGREF (CEM) GR4J Perrin et al. (2003) Streamflow forecasting Lumped Unit
Hydrograph

NWS Office of
Hydrologic
Development
(OHD)

HL-RDHM Koren et al. (2004) Streamflow, water resources forecasting 16 km2 grid cells SAC-SMA modified with heat transfer
component for frozen ground effects (Koren
et al., 2006, 2007)

Kinematic
wave

University of
Oklahoma (UOK)

Vflo™ Vieux (2004) Streamflow forecasting 1 km2 or smaller Event based Green–Ampt infiltration Kinematic
wave

Imperial College of
London (ICL)

Semi-
distributed

Moore (1985) Streamflow forecasting Semi-distributed Probability distributed soil moisture

U. Nebraska at
Lincoln (NEB)

HSPF Bicknell et al. (1997) and Ryu
(2009)

Streamflow and water quality forecasting Sub-basins Conceptual Muskingum

Wuhan University
(WHU)

LL-III Li (2001a,b) Streamflow and water resources forecasting 4-km grid Multi-layer finite difference model Full dynamic
wave
solution

U. Illinois (ILL) THREW Tian et al. (2006) Streamflow forecasting Sub basin REWs
U. California at Irvine

(UCI)
Semi-
distributed
SAC-SMA

Khakbaz et al. (this issue) Streamflow forecasting Sub basin (avg. size
�100 km2)

SAC-SMA Kinematic
wave

U. Alberta,
Edmonton (UAE)

DPHM-RS Biftu and Gan (2001) Streamflow forecasting Sub-basin Multi-layer water and energy balance Muskingum–
Cunge

Vrije U. Brussels
(VUB)

WetSpa Liu and De Smedt (2004) Streamflow and water resources forecasting 50 m grid Root zone soil water balance Kinematic
wave
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1.4.1. Overall run period measures (computed over calibration,
verification, or combined periods)

(i) Modified correlation coefficient, rmod (McCuen and Snyder,
1975; Smith et al. (2004a)). This measure was included to
provide consistency with the DMIP 1 results shown in Reed
et al. (2004).

(ii) %Bias (Smith et al., 2004a)
(iii) Squared error measure like RMSE to emphasize high flow

prediction. This could be %RMSE. Units could be in m3 s�1

or mm/h. The latter allows for analyses to be independent
of basin size.

(iv) Long term mass balance index. For this we generated com-
parison plots of runoff coefficient versus P/PE ratio.

1.4.2. Specific event measures

(i) rmod.
(ii) Volume error.

(iii) Peak time error.
(iv) Peak flow error.

It is worth noting that it was very difficult to suggest only three
statistical measures to be used for model calibration, either
lumped or distributed. A number of other measures such as thresh-
olds, false alarms, flow duration curves, probability of detection
(POD) and critical success index (CSI) were also proposed and
briefly discussed. The reason for this difficulty is that the NWS
(as do other institutions and agencies) uses different measures at
different times during the process of parameter calibration (e.g.,
Turcotte et al., 2003; Anderson, 2002; Smith et al., 2003; Hogue
et al., 2003). Measures used in the calibration process are often
designed to help make decisions about changes to specific param-
eters but are not necessarily a reflection of the overall model per-
formance. For example, in the early stages of calibrating the NWS
models, overall and seasonal biases are examined. Flow interval
statistics are examined to calibrate base flows, while for peak
flows, a different set of statistics and adjustments is used. Conse-
quently, the OHD team directed DMIP 2 participants to the paper
by Anderson (2002) and Smith et al. (2003) for a description of
the process and statistics used. For our analysis (reported here),
these recalibrated simulations were used instead of those submit-
ted for the September, 2007 workshop.

2. Results and discussion

We present our results in a cohesive progression (temporally
and spatially) from ‘general’ to ‘specific’ in order to understand
model performance and if models achieved good answers for the
right reason (Kirchner, 2006). Section 2.1 presents a water balance
analysis to get a general view of model behavior. Overall stream-
flow simulation results at basin outlets for the entire calibration/
verification period are analyzed in Section 2.2. We take a closer
look at streamflow simulations by examining specific events in
Section 2.3, including distributed model improvement over
lumped results in Section 2.4. Interior hydrograph simulations
are discussed along the way to assess model performance at unga-
uged sites. Following these sections, calibration impacts are exam-
ined in Section 2.5 by first looking at the effect of precipitation
consistency on calibration, and then examining the improvement
in simulation accuracy gained by calibrating a priori model param-
eters. Interior processes are further examined via soil moisture
simulations and routing for a subset of participants in Sections
2.6 and 2.7, respectively. The format of Reed et al. (2004) is
followed as much as possible to provide consistency with the DMIP
1 results. As noted in DMIP 1 (Reed et al., 2004) it is impossible to
present and discuss all of the analyses that were performed.

Table 2
Comparison of participants in DMIP 1 and 2.

DMIP 1 DMIP 2

U. Alberta at Edmonton
Canada (DPHM-RS)

Agricultural Research Service (ARS) SWAT ARS (SWAT)
U. Arizona (SAC-SMA) U. Arizona (HL-RDHM and

DHM-UA)
CEMAGREF (GR4J)
U. of California at Irvine

(Semi-distributed SAC-SMA)
DHI Water and Environment (DHI) Mike 11 DHI (Mike 11 and Mike SHE)
NOAA Environmental Modeling Center

(EMC) (Noah LSM)
EMC (Noah LSM)

Hydrologic Research Center (HRCDHM)
Mass. Institute of Technology (tRIBS)

U. Illinois (THREW)
Imperial College of London
U. Nebraska (HSPF)

NWS Office of Hydrologic Development
(OHD) HL-RDHM and Lumped SAC-SMA

OHD HL-RDHM and Lumped
SAC-SMA

U. Oklahoma (r.water.fea) U. Oklahoma (Vflo™)
U. California at Berkeley (VIC)
Utah State University (TOPNET)

Vrije U. Brussels (WetSpa)
U. Waterloo Ontario (WATFLOOD)
Wuhan U. China (LL-II) Wuhan U. China (LL-III)

Table 3
Streamflow simulations submitted by DMIP 2 participants. The parent basins are listed in normal text, while the interior points within each parent basin are listed in italics.
Values in the table are ‘u’ for uncalibrated and ‘c’ for calibrated simulations as called for in the DMIP 2 modeling instructions.

Model BLUO2 CONNR ELDO2 DUTCH TIFM7 LANAG POWEL TALO2 KNSO2 SPRIN WSILO CAVES SLOA4 SAVOY ELMSP SLOA4 CAVES ELMSP SAVOY

ARS u c u c u c u c u c u c u c u c u c u c u c u c u c u c u c u c u c u c u c
AZ1 u c u c
AZ2 u c u c u c u c
CEM u c u c u c u c u c u c u c u c u c u c u c u c u c u c u c u c u c u c u c
DH1 c
DH2 c
EMC u c u c u c u c u c u c u c u c u c u c u c u c u c u c u c u c u c u c u c
ICL u c u c u c u c u c u c u c u c u c u c
ILL u c u c u c u c u c u c u c u c u c u c
LMP u c u c u c u c u c u c u c u c u c u c u c u c u c u c u c u c u c u c u c
NEB u c u c u c u c u c u c u c u c u c u c u c u c u c u c u c u c u c u c u c
OHD u c u c u c u c u c u c u c u c u c u c u c u c u c u c u c u c u c u c u c
UAE u c u c
UCI u c u c u c u c
UOK u c u c u c u c u c u c u c u c u c u c
VUB u c u c u c u c u c u c u c u c u c u c u c u c u c u c u c u c u c u c u c
WHU u c u c u c u c
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2.1. Mean annual water balance comparisons

A general assessment of model behavior can be gained by exam-
ining the water balance over a multi-year period. Similar to the
evaluation of land surface models in recent experiments (e.g.,
Mitchell et al., 2004; Lohmann et al., 2004, 1998; Wood et al.,
1998; Duan et al., 1996; Timbal and Henderson-Sellers, 1998; Shao
and Henderson-Sellers, 1996), we investigated the ability of each
model to correctly partition precipitation into runoff, evaporation,
and losses. This is a new analysis compared to DMIP 1, and was re-
quested by participants at the September 2007 DMIP 2 workshop.

In this evaluation, we computed the water balance quantities
for each model using the general continuity equation:

dS
dt
¼ Pobs � E� Rmodel � L ð1Þ

where S represents all the various water storages on the land sur-
face including soil moisture, canopy storage, and storage in rivers,
Pobs is observed mean annual basin-average precipitation in mm,
E is evaporation in mm, L represents the intercatchment groundwa-
ter transfer (losses or gains) and R is runoff in mm depth over the
basin. We computed these quantities on an annual basis over a
multi-year period and assume that the change in storage over that
period is equal to zero. Observed mean annual precipitation over
the basin and computed runoff from each of the models was used
to compute a budget-based estimate of evaporation E and losses L:

Eþ L ¼ Pobs � Rmodel ð2Þ

This analysis was conducted for three parent basins (ELDO2,
TIFM7, and BLUO2) and one interior point (DUTCH, within ELDO2)
as these had the largest complement of submissions. For each of
seven calibrated models and each basin, we plot the value of
E + L computed using Eq. (2) versus the model computed value of
runoff (Fig. 1): an observations-based estimate of E + L is also
shown. For clarity, Fig. 2a shows an enlargement of the Blue River
and Fig. 2b shows an enlargement of the ELDO2, TIFM7, and
DUTCH results for runoff/evaporation values of 350 and 800 mm/
year, respectively. Each diagonal on the figures represents the par-
titioning of observed precipitation into computed runoff and evap-
oration (plus losses) for a basin, with the x and y intercepts equal to
the value of the mean annual areal observed precipitation. From
each diagonal, a model’s plotting symbol can be projected to the
x or y axis to yield that model’s basin-averaged mean annual runoff
or evaporation and losses, respectively. All models should plot on a
single line with a �1 slope and x and y intercepts equal to the
observed mean areal precipitation if they have the correct water
budget. All models that have the same partitioning of water should
plot at the same point.

The results indicate that all models partition precipitation rea-
sonably well for the calibrated parent basins. Given that the BLUO2
basin has the largest spring in Oklahoma (which flows out of the
basin; Osborn, 2009), it is perhaps surprising that all the models
performed so well in terms of precipitation partitioning for this
basin. Note, however, that three out of seven models performed
poorly for the DUTCH basin inside ELDO2 (NEB, ARS, EMC). Not sur-
prisingly, these three models had low values of rmod and large %Bias
statistics for the DUTCH basin (see subsequent discussion for Figs.
13a and 13b in Section 2.5.2).

2.2. Comparison of distributed and lumped model performance

One of the foremost science questions in DMIP 2 is ‘‘Can distrib-
uted hydrologic models provide increased simulation accuracy com-
pared to lumped models?’’ This section provides a general
assessment of the participant simulations. Following Reed et al.
(2004), Duan et al. (2006), and others, this analysis presents results

Partitioning of Precipitation by 7 DMIP-2 Models 
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from the combined calibration and verification periods so as to
provide a broad evaluation of model performance. Unless other-
wise noted, hereafter the term ‘overall statistics’ is defined as those
statistics computed for the entire calibration and verification peri-
od (see Section 1). Overall statistics are computed for calibrated
and uncalibrated streamflow simulations at parent basin outlets
and interior points.

Fig. 3 provides a general view of the distributed and lumped
model results for each parent basin and the interior points. Interior
point results are also plotted to address the questions: ‘‘What is the
potential for distributed models set up for basin outlet simulations to
generate meaningful hydrographs at interior locations for flash flood
forecasting?’’ We plot the hourly overall modified correlation coef-
ficient rmod for calibrated simulations over the combined calibra-
tion and verification periods for the entire flow range. This
measure was selected to correspond to the DMIP 1 results and is
good for comparisons across basins. Following Reed et al. (2004),
the parent basins and interior points are organized in order of
increasing drainage area. The basins that are calibrated are usually
the larger parent basins, and are plotted as positions 11–15. The
interior basins (points where calibration was not explicitly
performed) are plotted in positions one through ten. The median
of the rmod statistic for each calibrated model for each basin and
similarly for each uncalibrated model is also shown; these were
computed from the results provided by the seven groups that sub-
mitted a complete set of streamflow simulations.

Clearly, model performance tends to improve with basin size, in
agreement with the findings of DMIP 2 (Reed et al., 2004), for both
calibrated and uncalibrated models, and likely reflects the fact that
there is greater uncertainty in the spatially averaged rainfall esti-
mates for smaller basins. For example, Reed et al. (2007) found that
peak errors and percent standard deviation of peak errors vary
approximately linearly with the logarithm of the drainage area.
Similarly, Carpenter and Georgakakos (2004) found the uncertainty
in flow simulations from a distributed model increases in a well-
defined manner as drainage area decreases. However, note also
that explicit calibration at the interior points was not allowed, so

that the basins in positions 11–15 should be expected to have
better performance.

Note also the good overall calibrated performance of the first
benchmark lumped model LMP. In 10 out of 15 cases, the LMP
model ranks within the top two models. In three of the remaining
four cases, the LMP model ranks above the median of the calibrated
rmod. The second benchmark lumped model (CEM) also performed
well. In 13 out of 15 cases the CEM model ranks at or above the
median of the calibrated rmod statistic and amongst the top models.
Taken together, one of the two benchmark (lumped) models
ranked either highest or 2nd highest in all cases, reinforcing previ-
ous findings (e.g., Reed et al., 2004) that a calibrated lumped model
can typically outperform a calibrated distributed model in terms of
overall rmod for these study basins.

In addition, we also show results for the uncalibrated OHD and
LMP models. It is interesting that in many of the parent and inte-
rior basins, these uncalibrated models provide higher overall rmod

values than many of the calibrated distributed models. Other
examples of this are presented in Section 2.5.

Basin-to-basin differences in performance are also revealed by
Fig. 3. All models gave relatively poor performance at basin eight
(Blue River at interior uncalibrated point CONNR); this is not sur-
prising given that the basin contains several complications includ-
ing sinkholes and gaining and losing sections, and that this area
contains the largest spring in Oklahoma, (flowing northeast out
of the Blue River basin) supplying water for the city of Ada, Okla-
homa. Smith et al. (this issue) discuss these hydrogeologic
complexities in more detail. On the other hand, remember that
BLUO2 behaved well in terms of the multi-year-average partition-
ing of precipitation (Figs. 1 and 2).

Fig. 4 shows the overall %Bias statistic for each model for each
basin, computed over the entire span of the calibration and verifi-
cation periods. Parent basins and interior points are shown and are
organized in order of increasing drainage area. Except for basin
eight (CONNR), the median of the calibrated values is closer to zero
than for the uncalibrated models. Notably, this holds even for the
calibrated interior points. Again, hydrogeologic complexities in
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parent basin BLUO2 and its interior point CONNR appear to compli-
cate the modeling process, with only two models (CEM and WHU)
achieving an overall bias within ±10%. On the other hand, at basin
11 (ELDO2), all of the models were able to achieve a bias less than
±10%. Of the seven groups that generated simulations for all basins,
no single model performed best in all cases in terms of overall
%Bias.

Based on the overall rmod and %Bias statistics computed for the
interior points, the distributed models calibrated at the basin out-
let exhibited a wider range of performance than did the bench-
marks (the lumped models). In terms of overall rmod, the
calibrated models that performed well at parent basins also tended
to perform well at interior points. At the smallest interior point
basins (basins 1–5, and 9), only the OHD model gave equivalent
or better overall rmod values than the LMP model (this is not sur-
prising in that the LMP and OHD models use similar parameteriza-
tion schemes). For the larger interior point basins (6–10), several of
the calibrated distributed models (UCI, VUB, and CEM) gave better
rmod performance than the LMP model. Further, several distributed
models gave better (i.e., smaller) %Bias performance than the LMP
model at outlets and interior points.

2.3. Event statistics

For a more in-depth view of model performance, goodness-of-
fit statistics were computed for a number of specific rainfall/runoff
events (see Table 4) as was done in DMIP 1 (Reed et al., 2004). In
general, many more events were available for analysis than in
DMIP 1. Events were selected from both the calibration and verifi-
cation periods. As in the other DMIP 2 experiments, no state updat-
ing was allowed.

For this analysis, we computed values of two of the four metrics
mentioned in the introduction and used in DMIP 1 (Reed et al.,
2004): the event absolute percent peak error and event absolute
percent runoff error (defined in Smith et al., 2004a). Figs. 5 and 6
present the averaged event absolute peak error plotted against
averaged event absolute runoff error (averaging is across all events

examined – see Table 4). The calibrated results for ELDO2 and
BLUO2 (including their respective interior points) are presented
as typical for all the study basins. Small values for both errors
are desirable, plotting towards the lower left of each graph. Note
that not every participating group submitted results for each basin.
Appendix C presents the event results for the remainder of the
study basins.

For the ELDO2 basin and its interior point at Dutch Mills
(DUTCH), some models performed well in both cases and some
models did not (Fig. 5). For ELDO2, the LMP, OHD, WHU, AZ2,
CEM and VUB simulations plotted as a group within a range of
20–40% absolute peak error and between 10% and 25% absolute
percent runoff error. The remaining models were less accurate in
terms of both error statistics. At the DUTCH interior point (which
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Table 4
Number of events used to for event statistics.

Number of events used (calibration and
verification periods)

DMIP 2 DMIP 1

BLUO2 41 24
CONNR 41 –

ELDO2 28 24
DUTCH 31 –

SLOA4 40 21 (WTTO2)
CAVES 23
ELMSP 34
SAVOY 40

TALO2 25 21
KNSO2 29 20
CAVES 23 –
ELMSP 34 –
SAVOY 40 –
SPRIN 28 –
WSILO 30 –

TIFM7 42 24
LANAG 29 –
POWEL 35 –
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streamflow data was not used for calibration), there is more spread
in the model performance. The LMP, OHD, AZ2, and WUB results
again cluster, but with slightly worse results compared to ELDO2.
These models are joined by ARS, which improved in a relative
sense compared to the best group. WHU did not perform as well
due to the large runoff error of around 64%, even though peak error
reduced from 36% to 34%. The NEB and EMC model results plotted
the furthest from the optimal values. The OHD_1 simulation was
derived by running the OHD DMIP 1 calibrated parameters with
the DMIP 2 precipitation data (see Section 2.5.1). Comparing
OHD and OHD_1, calibration using the biased 1993–1999 precipi-
tation data did not affect combined peak error at ELDO2 or DUTCH,
but resulted in a slight 1–2 point worsening in the combined runoff
volume error.

Not surprisingly, the Blue River basin (BLUO2 and its interior
point CONNR) shows less consistent results (Fig. 6) than do ELDO2

and DUTCH. WHU gives the best event statistics and stands alone
among all the participating models. At CONNR, the model results
are worse than at BLUO2 as seen by the large x- and y-plotting
scales. Models that performed relatively well for BLUO2 did not
necessarily do so at CONNR, underscoring the difficulty of model-
ing the Blue River basin. ARS and CEM results are only slightly
worse at CONNR compared to BLUO2.

Looking collectively at the results, several calibrated lumped
and distributed models that performed well at the parent basin
outlet were also generally able to perform well at the interior loca-
tions for specific rainfall/runoff events, albeit at a slightly lower
level of accuracy. This result suggests that these models effectively
capture the fast responding portions of the hydrograph at both the
parent basin outlet and interior points. The exception is the BLUO2,
where the relative ranking of model performance is quite different
at the basin outlet compared to the CONNR interior point.
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2.4. Improvement of distributed over lumped models for specific events

Here, we address the question of the ability of distributed mod-
els to provide improvements over a lumped model, by investigat-
ing performance (in terms of volume, peak discharge, and peak
timing statistics) on a number of rainfall/runoff events. The bench-
mark used here is the aggregated lumped model simulation
derived by taking the average of the LMP and CEM values (this
way, the results are more rigorous than if based on simulations
from only one model as in DMIP 1). Hereafter, this standard is
referred to as the LMP–CEM.

Figs. 7–9 present the event-average improvement statistics for
volume, peak discharge, and peak timing, respectively, for cali-
brated models computed for the reference (combined calibration
and verification) period using Eqs. (10–12) of Appendix A in Smith
et al. (2004a). The number of events ranged from 23 (CAVES) to 42
(TIFM7) as shown in Table 4. In all three figures, the boxes on the
abscissa labels denote parent basins and the interior points for
each parent basin are plotted to the right of each box. Each plotting
symbol represents an aggregate measure of the performance (for

many events) of a specific calibrated model for a specific basin.
The median value of distributed model performance for each basin
is also plotted. The basins SLOA4, SAVOY, ELMSP, and CAVES are
plotted twice, due to the modeling instructions that called for
SLOA4 to be modeled as an independent headwater basin and then
with SAVOY, ELMSP, and CAVES as interior points for TALO2. There
are 148 model-basin pairs; this is nearly three times the number of
pairs (51) for the same analyses in DMIP 1.

The average event volume improvement plot (Fig. 7) shows
both improved and degraded performance by the distributed mod-
els. For all locations, the median improvement of the calibrated
distributed models is negative. For clarity, we have limited the
y-axis plotting to �80%, and so the values of �154% for CONNR
by VUB and the value of �104% for LANAG by EMC cannot be seen.
Distributed models realize positive gains over the LMP–CEM
benchmark in 18% of the model-basin aggregate cases. These
improvements are generally less than 10% except at BLUO2 and
CONNR, where the improvements are better (15–30%). Corre-
sponding to Reed et al. (2004), the improvement nearly doubles
to ’32% over the LMP–CEM benchmark when models having poor

Improvement in Event Volume
Distributed vs. Lumped (LMP and CEM)

Calibrated Models; All Periods
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performance (performance values smaller than �5%) are excluded.
In general, no difference in performance spread is noted between
parent basins and their constituent interior basins.

An interesting comparison can be made between Fig. 7 and the
equivalent (Fig. 15a of Reed et al., 2004) from DMIP 1. In DMIP 1,
only the OHD model was able to provide any improvement over
the lumped model in terms of runoff volume at the parent basins.
Further, the improvement was less than 5%, and only for three par-
ent basins. It is encouraging that in DMIP 2 a greater number of
models were able to realize improvement over lumped models,
and that this improvement extends to interior points as well.

Peak flow performance results (Fig. 8) are similar to event
volume results, although larger improvements are seen here with
24% of the cases showing positive flood peak improvements great-
er than zero, and 36% of the cases show improvement greater than
or equal to the �5% value used in Reed et al. (2004). The median
performance for this statistic is positive in four cases. Basin BLUO2
received the greatest improvement, with eight models providing
improved performance over the LMP–CEM benchmark. This result
is not surprising given the long narrow basin shape and
orientation.

Fig. 8 corresponds to Fig. 15b in the DMIP 1 results paper by
Reed et al. (2004). Only the OHD model was able to provide
improvement over the lumped model in all the headwater basins
in DMIP 1, with two other models also providing improvements
in the BLUO2 basin. Four models in DMIP 1 were able to provide
noticeable improvements for one of the three interior points.
Fig. 8 of the current paper shows that while there were many cases
in which distributed models did worse that the LMP–CEM bench-
mark, there were also many more cases in DMIP 2 in which distrib-
uted models generated improved peak flow statistics compared to
lumped models.

Fig. 9 examines the improvement in event-average peak timing.
Other than a marginal improvement of 0.09 h for VUB in the SLOA4
headwater basin, noticeable peak time improvement due to dis-
tributed modeling is seen in only one of the parent basins (BLUO2);
this result was also seen in DMIP 1. At least one distributed model
achieved a peak timing improvement at each interior point (except
at the TALO2 sub-basins WTTO2 and SLOA4) even though explicit
calibration was not performed at those points. Considering parent
and sub-basins, 28% of the model-basin pairs showed positive

event-average peak timing improvement greater than zero. In
42% of the cases, even-average peak time improvements are
greater than �1 h.

As in DMIP 1, the calibrated distributed models were able to
provide improvements in peak hydrograph timing for only one
(BLUO2) of the five parent basins. However, while only two DMIP
1 models were able to generate improved peak timing for BLUO2,
nine models were able to do so in DMIP 2. Given that DMIP 2 in-
cluded two lumped models, both using unit graphs, our results
seem to support (for the basins other than BLUO2) the hypothesis
of Reed et al. (2004) that physically-based routing schemes are
more sensitive than unit hydrograph methods to errors in runoff
depths given that velocities are dependent on flow rate. It is possi-
ble that in the elongated BLUO2 basin, the strength of the interac-
tion of the spatial variability of rainfall with the flow network is
greater than any errors in timing reported by Reed et al. (2004).
Whereas in the other basins, the spatial variability of precipitation
in the DMIP 2 forcing data was not great enough to cause large var-
iability in peak hydrograph timing, or perhaps the stream network
in these other basins is simply not very sensitive to spatial varia-
tion of precipitation (Smith et al., 2004b). These issues will require
further investigation.

Among calibrated models, no single model gave improvements
in all three event improvement statistics for all basins. Of the five
groups that submitted a full set of simulations (resulting in 100
model-basin pairs in these analyses), the OHD model ranked the
highest in terms of event volume improvement (by generating 13
out of the 27 instances of positive values) followed by the ARS
model (4 of the positive values). Similarly, OHD ranked highest
in peak flow improvement (with 15 of 36 cases of positive
improvement) followed by VUB (6 cases). Finally, OHD also ranked
highest in terms of peak time improvement (10 of 42 cases of po-
sitive improvement), followed by VUB (6 cases) and NEB (5 cases).

In general, lumped and distributed models that performed well
at basin outlet points also performed well at interior points (albeit
at a slightly degraded level of performance). This is especially true
in terms of both overall calibrated rmod statistic (Fig. 3) and the
event statistics (Figs. 7–9). This finding has a stronger basis than
DMIP 1, given that DMIP 2 had 9 gauged interior points with a
broad range of drainage areas, compared to only three points in
DMIP 1. The smallest sub-basin in DMIP 1 (Peacheater Creek at

Improvement in Event Peak Time
Distributed vs. Lumped (CEM and LMP)

Calibrated Models, All Periods
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Christie, OK) had a drainage area of 65 km2) whereas two of the
DMIP 2 interior points (SPRIN and WSILO) had even smaller drain-
age areas (37 km2 and 49 km2, respectively). Note that Reed et al.
(2004) cautioned that some of the models in DMIP 1 had a coarse
computational resolution compared to the size of the smallest
basin and called for more studies on smaller, nested basins. Our
results suggest that distributed models can provide reasonable
simulations at interior locations over a relatively wide range of
drainage areas. These results show promise for flash flood forecast-
ing at interior locations where specific calibration cannot be
performed.

2.5. Impact of parameter calibration

2.5.1. Calibration period results
Common problems associated with hydrologic model calibra-

tion include questions concerning the length and quality of the
period of available data (e.g., Ghizzoni et al., 2007; Oudin et al.,
2006; Brath et al., 2004; Andreassian et al., 2001, 2004; Gupta
et al., 2003; Young et al., 2000; Bradley and Kruger, 1998; Gan
et al., 1997; Xu and Vandewiele, 1994; Sorooshian et al., 1983).
The specific DMIP 2 science question related to this issue is: ‘‘What
simulation improvements can be realized through the use of a more
recent (i.e., higher quality) period of radar-based (i.e., multisensor)
precipitation data than was used in DMIP 1? What is the impact of cal-
ibrating a distributed model with temporally inconsistent multisensor
precipitation observations?’’

DMIP 1 participants identified the data period spanning 1993–
1996 as being problematic (i.e., low bias; Reed et al., 2004; Guo
et al., 2004; Young et al., 2000), and so DMIP 2 made available mul-
ti-sensor precipitation data for the subsequent period starting in
1996. Figs. 10a and 10b show the cumulative simulation errors
for BLUO2 and SLOA4, respectively, which can be compared with
the DMIP 1 results (Fig. 11 reproduced from Figs. 2a and 2b of Reed
et al. (2004). Clearly, as in DMIP 1, not all participants placed a pri-
ority on minimizing simulation bias during calibration, with some
of the simulations showing large positive or negative cumulative
errors. However, in contrast to DMIP 1, the accumulated error plots
(Figs. 10a and 10b) appear to be more homogeneous (relatively
constant rate of error accumulation), suggesting both that the
precipitation forcing is more consistent over time and that the
accumulated errors could be reduced by parameter adjustments
(as is standard practice for NWS calibration).

For the period April 2001–September 2002, all of the BLUO2
simulations indicate under-prediction, resulting mainly from a

sequence of five under-simulated medium and large size flood
events (December 18, 2001; February 1, 2002; February 20, 2002,
March 20, 2002; and April 8, 2002). Possible causes may be anom-
alies in the precipitation or PE forcings, or errors in streamflow
measurement. Illston and Basara (2002) and Illston et al. (2004)
identified a severe drought in the summer of 2000 for the south-
western portion of Oklahoma, and commented that the precipita-
tion during the following winter did not fully recharge the soil at
the deepest layers. Further, Schneider et al. (2003) commented that
in the western portion of the domain, soil moisture has a long
‘memory’ of precipitation deficits that can last one or more
seasons. Nonetheless, it seems unlikely that all of the DMIP 2 mod-
els poorly simulated the drought conditions so as to generate poor
storm hydrographs 1½ years later. Note that DMIP 2 participants
were free to use any type of PE forcing in DMIP 2. To derive the
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time series of daily PE forcing, some used the climatic monthly
means (e.g., OHD, LMP), while others (AZ1, AZ2, ILL, and NEB) used
the North American Regional Reanalysis data set (NARR, Mesinger
et al., 2006). ARS estimated PE using NCDC daily temperature data
with a Priestly–Taylor formulation and UOK estimated PE using
observations from the Oklahoma Mesonet. Given that all the sim-
ulations show a similar trend (while using different PE forcing data
sets), it is likely that the cause of the under-simulation is a period
of anomalous precipitation or problems with streamflow
measurement.

DMIP 1 specified the period 1993–1999 (hereafter called
‘biased’ period) for model calibration whereas DMIP 2 used the
period 1996–2002 (hereafter called ‘unbiased’ period); note that
there is a 3-year overlap between the two calibration periods.
Fig. 12 shows the results of an experiment designed to highlight
differences caused by these two periods on the calibration results.
The models were calibrated using each period and then used to
simulate the reference period from 1996 to 2006. This experiment
fits into the category of ‘dynamic sensitivity studies’ as defined by
Andreassian et al. (2004) and later by Oudin et al. (2006), in which
reference calibration and corresponding reference simulation
periods are specified, using a reference precipitation data set (in
our case, the unbiased data) and then model recalibration is per-
formed using the biased data for comparison with the reference
simulation.

Only OHD provided simulations for this experiment (UCI pro-
vided simulations only for WTTO2, which was not a calibrated
basin for DMIP 2) so the results are not as comprehensive as we
would like. In the following, we use the term OHD to refer to the
reference simulation and OHD_1 to refer to the simulation using
biased data. For all cases where explicit outlet calibration was al-
lowed (i.e., parent basins ELDO2, BLUO2, TALO2, and TIFM7), cali-
bration using the biased data period generally resulted in larger
runoff biases for the reference simulation period 1996–2006 than
when using the unbiased data period (Fig. 12). Calibration (at the
parent basin outlets) on the biased period also generally resulted
in larger runoff biases for the interior points (with the exception
of CONNR). While the difference in runoff bias at ELDO2 is barely

noticeable compared to BLUO2, TALO2, and TIFM7, visual examina-
tion of the OHD and OHD_1 hydrographs showed that the majority
of the small and intermediate events were over-predicted while
the large events underpredicted, so that the ELDO2 values pre-
sented in Fig. 12 do not represent the entire picture.

To put these %Bias values in context, we count the number of
instances that the %Bias for the OHD_1 model is greater in absolute
value than the calibrated %Bias statistics from the other models
(Table 5). The OHD_1 simulation is seen to be worse than the
majority of the participants’ simulations from the calibrated parent
basins.

The choice of calibration period had similar impacts on the rmod

statistic. In eight out of ten cases, calibration on the unbiased per-
iod improved the rmod value for the entire reference simulation
period (see the italic values in Table 6; for reference, we present
the rmod value for the LMP model). In four cases (ELDO2, DUTCH,
CONNR, and SAVOY), the improvement in rmod gained by the
OHD model over LMP was lost when calibrating using the biased
data period. We also examined the impact of the calibration period
on flood events; mixed impacts on hydrograph peak and volume
errors were found.

% Bias Resulting from Two Calibration Periods: 
1993 – 1999 (filled symbols)    1996 – 2002 (open symbols) 
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Table 5
Number of instances in which OHD_1 %Bias is greater than
calibrated DMIP 2 model %Bias for the overall 1996–2006 period.
Interior points are shown indented below the parent basin.

Basin OHD_1 %Bias Worse than

ELDO2 8 of 9
DUTCH 3 of 9

BLUO2 13 of 15
CONNR 5 of 13

TALO2 7 of 10
SAVOY 5 of 8
KNSO2 7 of 10

TIFM7 7 of 7
LANAG 6 of 7
POWEL 5 of 7
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Faced with an increasing number of data sets available to drive
distributed models (e.g., Di Luzio et al., 2008; Nelson et al., 2010;
Mesinger et al., 2006; Hamlet and Lettenmaier, 2005), we suggest
that more rather than less care is needed to evaluate the quality of
data used for both modeling studies and operational forecasting. In
particular, we must counter the temptation to accept new sources
of data as inherently ‘good’ or ‘better’ simply because they have a
higher spatial and temporal resolution. This caution seems reason-
able in light of growing list of available approaches to identify and
correct biased precipitation estimates (e.g., Looper et al., this issue;
Zhang et al., 2011; Guentchev et al., 2010). Care must be taken to
correct only man-induced errors in the data and not inconsisten-
cies due to real climate change that are now beginning to appear
in multi-decade hydroclimatic records (Milly et al., 2008).

2.5.2. Improvement provided by calibration
An important science question in DMIP 2 concerns potential

improvements provided by calibration of model parameter esti-
mates: ‘‘What combination of parameterization schemes and cali-
bration strategies seem to be most effective and what is the level of
effort required?’’ Addressing this question in DMIP 2 was con-
strained by the limits of user/model familiarity and expertise.

For the purpose of DMIP 2, parameter estimation is defined as
the derivation of a priori estimates of model parameters from phys-
ical basin characteristics such as soils data. Calibration is the
subsequent process of refining the a priori (or other initial) param-
eter values so that an acceptable level of error is achieved between
simulated and observed hydrologic variables (Smith et al., this is-
sue). Central to this discussion is the value of having initial or a pri-
ori values of the model parameters, the development of which is an
active area of research; e.g., see the recent Model Parameter Esti-
mation Experiment (MOPEX) project (Andreassian et al., 2006)
and especially the MOPEX special issue (J. Hydrology, vol. 320,
2006) as well as Zhang et al. (2011, in review), Moriasi and Starks
(2010), Mizukami and Koren (2008), Peschel et al. (2006), Wang
and Melesse (2006), and Koren et al. (2000, 2003a) for additional
work on the estimation of a priori parameters. Appendix B de-
scribes the range of parameterization and calibration strategies
used by DMIP 2 participants and should be referred to in the
following discussion. We also refer to participants’ papers in this
Special Issue for additional details on parameter estimation and
calibration.

For this experiment, calibration was allowed only at the outlets
of the parent basins. During the runs to generate uncalibrated and
calibrated simulations at the parent basin outlets, participants
were instructed to also generate simulations at interior points.

Figs. 13 and 14 illustrate changes (due to calibration) in rmod

and %Bias statistics for ELDO2 and TALO2, respectively (and their

interior points). We present these results as typical of the study ba-
sins. Appendix D presents the remaining results. The plotted points
are connected by arrows, indicating the direction from uncali-
brated to calibrated value. For points that plot outside the %Bias
plotting scale, we show their coordinates. Values of rmod closer to
1.0 and %Bias closer to zero are desired. Results are also shown
for the interior points to evaluate the effectiveness of the parame-
terization/calibration strategies. The plotting schemes of Viney
et al. (2006) are used here to analyze calibration impacts.

For ELDO2, Fig. 13a shows that calibration resulted in improved
%Bias measure for all models except NEB (which showed a very
slight degradation; uncalibrated �2.3% versus calibrated 3.5%).
Calibration also improved rmod in all but one case (CEM). At the
interior point Dutch Mills (Dutch, Fig. 13b) both uncalibrated and
calibrated performance is worse than at the outlet point (as one
would expect from not performing explicit calibration). Note how-
ever that several models (LMP, AZ2, VUB, and OHD) gave reason-
able performance (at interior point DUTCH), using their a priori
parameter estimates, and that calibration at the outlet point

Table 6
Overall rmod statistic for the 1996–2006 period from the OHD model calibrated on two
periods: OHD_1 (1993–1999) and OHD (1996–2002). LMP results shown for
reference.

rmod

OHD_1 OHD LMP
1993–1999 1996–2002 1996–2002

ELDO2 .881 .907 .891
DUTCH .621 .680 .628

BLUO2 .748 .760 .819
CONNR .268 .486 .440

TALO2 .904 .936 .894
SAVOY .695 .759 .730
KNSO2 .795 .827 .758

TIFM7 .803 .777 .876
LANAG .644 .448 .466
POWEL .571 .615 .632
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(ELDO2) did not seem to significantly improve their performance
(in terms of these statistics) at the interior point.

Fig. 14a presents the results for TALO2. As in ELDO2, somewhat
mixed results can be seen. Calibration improves both the rmod and
%Bias for several models: ARS, OHD, LMP, UOK, CEM, EMC, and ILL.
However, calibration of the VUB and NEB models improved either
rmod or %Bias, but not both.

TALO2 contains seven interior points; here we discuss the three
that are unique to TALO2: KNSO2, SPRIN, and WSILO. Figs. 14b–d
shows that calibration at TALO2 provided improvements in the
rmod and %Bias statistics for six models at KNSO2: CEM, EMC,
UOK, ILL, LMP, and OHD. Model performance at the KNSO2 interior
point is not as good as at the TALO2 calibration point. At WSILO,
three models were improved by calibration: LMP, OHD, and ILL.
Calibration at TALO2 improved the rmod and %Bias for three models
(LMP, UOK, and ILL) at the SPRIN interior location (see Fig. 14d).
Model performance across all the interior points for TALO2 is fairly
consistent.

Fig. 15 shows an overview of the impacts of parameterization
and calibration. Each subplot in the left column shows rmod for
the parent basins arranged in order of decreasing rmod perfor-
mance. The right side of each parent basin shows the rmod value
for a corresponding selected interior point (i.e., the group plotting
order is the same). The purpose of this plot is not to rank models
but rather to show that while most models benefited from param-
eter calibration, calibration alone did not result in large improve-
ments in model performance over the level achieved using a
priori parameters. It is interesting that calibration of the model
parameters was unable to compensate for differences in model
structures.

DMIP 2 participants used a variety of calibration strategies.
Some leveraged the information in lumped model parameter sets
to constrain or inform the calibration of a priori distributed param-
eters (e.g., OHD, ICL, UCI, WHU, CEM). The use of such lumped
information appears valid given the good performance of the
lumped models (LMP and CEM) in the DMIP 2 basins. Alternatively,
one strategy (ARS) independently optimized the parameters in
each computational element without regard to spatial pattern, let-
ting the parameter values float between defined limits. As in DMIP
1, calibration resulted in performance gains for most models. The
calibration strategies for two models (OHD, LMP) improved both
the rmod and %Bias statistics in all cases of the five parent basins.
The strategies used by ARS and EMC improved both statistics in
three of the parent basins, by NEB and VUB in two basins and by
CEM in one. Calibration of the models based on the Sacramento
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model structure (AZ1, AZ2), and UCI) consistently provided
improvements at BLUO2, ELDO2, and SLOA4. The strategy used

by WHU improved rmod and %Bias at the two parent basins for
which it was applied (BLUO2 and ELDO2) as did the strategy used
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by UOK, although the final %Bias value for TALO2 remained quite
high. The strategy used by ILL produced mixed results for TALO2
and BLUO2. Our results suggest that a strategy using a well-defined
a priori parameter set and informed by the results of lumped cali-
bration provides better accuracy and more consistent results.

In the majority of cases, calibration at the basin outlet improved
simulation statistics at the outlet itself, but these improvements
did not consistently translate to improvements at the interior
points. In some cases, the ‘good’ results achieved at interior points
using a priori parameters were made worse when the models were
calibrated to basin outlet hydrographs. This suggests that currently
used methods are not consistently/unambiguously able to extract
accurate information about parameter field distribution (and
hence interior point behaviors) from basin outlet hydrographs
and the available rainfall data (Pokhrel and Gupta, in press; van
Werkhoven et al., 2008). Although not a part of DMIP 2, calibration
is sometimes performed at interior points in order to leverage all
available data (e.g., Ivanov et al., 2004; Vivoni et al., 2006; Khakbaz
et al., this issue). While of considerable interest, our results do not
provide insights regarding the use of this kind of data.

Model simulations with a priori parameters showed a range of
performance. In several parent and interior basins, a few uncali-
brated distributed models performed better than some calibrated
distributed models, at least in terms of overall and event-based val-
ues of rmod and %Bias (Figs. 3–6). This highlights the combined
strength of these models their a priori parameters for these basins.
The OHD model was most consistent in this regard, followed by LMP.

Consistent with Bastidas et al. (2003), our findings reinforce the
notion that improvements in calibration techniques, while useful,
may currently be less effective than ongoing community efforts
to develop advanced a priori parameter estimation techniques
(e.g., Williamson and Odom, 2007; Zhang et al., 2011, in review),
in conjunction with new modeling approaches. These efforts are
complemented by the recently proposed focus on developing strat-
egies for using data to help in diagnosing and correcting model
structural inadequacies (Gupta et al., 2008; Clark et al., 2011).

2.6. Soil moisture experiment results

A major addition in DMIP 2 was the experiment to evaluate soil
moisture simulations by distributed models for the Oklahoma ba-
sins. The science questions here are: ‘‘Can distributed models predict
processes such as runoff generation and soil moisture re-distribution
at interior locations? At what scale can we evaluate soil moisture
models given current models and sensor networks?’’

For this evaluation, participants provided 4 km gridded daily
runoff and soil moisture estimates over an area covering the entire
Oklahoma Mesonet instrumentation domain in Fig. 3 of Smith et al.
(this issue). Simulations were generated using a priori parameters
without calibration, and with no hillslope/channel routing being
performed. This domain exhibits a strong gradient in the climate
index, (herein defined as the ratio of annual precipitation to poten-
tial evaporation, P/PE), ranging from 0.57 in the western portion to
1.18 in the eastern portion. Lower values of P/PE indicate a dry cli-
mate, while larger values imply a wetter climate. The strong P/PE
gradient, combined with the variety of soil types and landcover,
facilitates the evaluation of soil moisture simulations throughout
a climatically diverse region and over a wide range of conditions
(Gu et al., 2008; Wood et al., 1998). Others have used the P/PE in-
dex (e.g., Koren et al., 2006, 2008; Duan et al., 2006; Schaake et al.,
2004; Dooge, 1992) or its reciprocal, the dryness index (e.g., Milly,
1994; Wollock and McCabe, 1999; Zhang et al., 2001; Sankarasubr-
amanian and Vogel, 2002; Wagener et al., 2007) in hydrometeoro-
logical studies.

Illston et al. (2008) and Koren et al. (2006) noted that several
issues accompany the use of the volumetric soil moisture data from

the Mesonet sites. First, the upper bound of the soil moisture esti-
mates is limited by the accuracy of the Campbell Scientific 229L sen-
sor (Campbell Scientific 229L User Manual, 2010). Temperature
observations from this sensor are converted to soil water matric po-
tential using empirical relationships (Schneider et al., 2003). The
units of soil matric potential are kilopascals, (kPa), negative by con-
vention. Given that the lower limit of the observed values of the tem-
perature reference is approximately 1.4 �C, the equation for
computing soil water matric potential does not return values near
saturation between 0 and �10 kPa. Thus, the upper limit of the soil
moisture observations corresponds to a matric potential of
�10 kPa. Second, the instantaneous volumetric soil moisture mea-
surement at a station is related to the soil type and the physiographic
properties of the location as well as to the availability of moisture
supply (i.e., precipitation) in the area. This complicates comparisons
of stations located in different areas even during similar weather
conditions. Third, hydrologic model states and volumetric soil mois-
ture measurements may not have a one-to-one correspondence, and
hence, a completely objective comparison of these two quantities
may not be possible. Moreover, the Oklahoma Mesonet soil moisture
measurements were designed for drought monitoring over a large
area (average coverage is one site per 3000 km2) and as a result,
these observations do not represent soil moisture variability at the
hillslope-type scale, but may be used as indicators of soil moisture
variability over mid- to large-size watersheds.

To reduce the impacts of these issues, participants were asked
to compute estimates of a soil moisture saturation ratio defined
as (Koren et al., 2006, 2008):

SR ¼ h� hr

hs � hr
ð3Þ

where h is the computed or observed volumetric water content, hr is
the residual volumetric water content (or wilting point), and hs is
the saturation volumetric water content (or porosity). The instruc-
tions called for SR to be computed for three layers: 0–5 cm, 0–
25 cm, and 25–75 cm depth. The SR index attempts to reduce the
effects of the individual soil property variation on intercomparison.
Others have used similar relative measures. For example, Sridhar
et al. (2008) used a form of Eq. (3) in order to define a soil moisture
index (SMI) that had the same numeric range as the US Drought
Monitor. Schneider et al. (2003), Illston et al. (2004, 2008), and Gu
et al. (2008) used a fractional water index (FWI) to avoid the issues
mentioned above.

Only EMC and OHD submitted a full set of soil moisture simula-
tions. These consisted of time series of 4 km gridded, daily average
runoff and SR values for a large modeling domain encompassing the
state of Oklahoma (Smith et al., this issue). Models were run with a
priori (uncalibrated) parameters. After the DMIP 2 conference, VUB
submitted a simulation of SR for the ‘‘West’’ Oklahoma Mesonet site
(see Appendix E). The results shown in Appendix E indicate that the
VUB model is able to fairly well reproduce water content variations
in wet and dry periods at a point. The plot of the observed soil mois-
ture in Appendix E also shows how the upper limit of SR is affected
by the sensor (as discussed above).

For the analysis of the soil moisture simulations at interior loca-
tions, we computed basin averages of the gridded runoff and SR
values for 75 basins within the modeling domain used previously
by Koren et al. (2006) and ranging in size from 20 km2 to
15,000 km2; please refer to that paper for more information. Ob-
served streamflow data for each basin is available from the USGS.
Our evaluation compared simulated to observed runoff at basin
outlets, and compared basin averages of simulated SR to values
of SR derived from the Oklahoma Mesonet observations.

To compute ‘‘observed’’ SR values, the Oklahoma Mesonet soil
moisture measurements, which are recorded automatically every
30 min (Illston et al., 2003), were aggregated to obtain daily average
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values. For each layer, point SR values were interpolated to a 4 km
grid for the entire State of Oklahoma using inverse distance weight-
ing, with weights computed on a daily basis from stations having
available data on a given day. We assumed that this weighting
scheme is appropriate given that spatial correlation of the point soil
moisture observations degrades quickly with distance. The gridded
daily maps of SR were then used to generate daily time series of ba-
sin average soil moisture for the period (Koren et al., 2006).

Table 7 presents several statistics of 10-day averaged daily run-
off and daily SR values at three depths (0–5 cm, 0–25 cm, and
25–75 cm) for the 6-year simulation period from January 1, 1997
to December 31, 2002. In computing the runoff statistics, a 10-
day interval was used to reduce the impact of omitting hillslope/
channel routing from the experiment. This period is notable in that
it includes severe droughts that occurred in 1998 and 2000 (Illston
et al., 2003, 2004; Illston and Basara, 2002; Hong and Kalnay,
2002). The simulations from both models correlate well with
observed data, in spite of the fact that severe droughts occurred
over large parts of the region in both 1998 and 2000 while above
average soil moisture conditions were experienced in 1997 and
other years. For the OHD model, the correlation coefficients for soil
moisture in the two upper layers are high and degrade with depth.
For the EMC model, the soil moisture correlations display the
opposite behavior, and increase with depth. For both runoff
volumes and soil moisture, the correlation coefficient and Nash–
Sutcliffe (NS) efficiency for the OHD model are consistently higher
than for the EMC model. Some degradation of soil moisture
simulation accuracy for both models can be observed for the
deeper soil layer with the NS efficiency becoming negative.

For both models and for all basins, the average soil moisture
correlation coefficients in Table 7 are higher than those between
the NDVI/NDWI and soil moisture averaged for 17 sites in the
Oklahoma Mesonet domain in the study by Gu et al. (2008). This
suggests that the EMC and OHD models can simulate soil moisture
reasonably well.

Figs. 16 and 17 show the relationship of SR versus P/PE for the
upper (0–25 cm) and lower (25–75 cm) soil depth layers respec-
tively, while Fig. 18 shows runoff versus the P/PE. Here, P for each
of the 75 basins was derived from the DMIP 2 radar-based precip-
itation grids, while PE was taken from the NOAA Evaporation Atlas
(Farnsworth et al., 1982). Values from this atlas were supplied by
DMIP 1 and 2 and are still used by NWS RFCs. The plots in these
figures clearly show that the models do a good job of reproducing
the patterns suggested by the measurements regarding the depen-
dency of soil moisture and runoff on P/PE. Consequently, efforts
have been initiated to assimilate soil moisture observations of
the type provided by the Oklahoma Mesonet into distributed
models (e.g., Lee et al., in press).

To address the question of soil moisture predictability versus
scale, we analyzed the relationship of SR RMSE versus basin scale
as shown in Fig. 19 for two soil layers: 0–25 cm and 25–75 cm.
The RMSE measure is computed over the January 1, 1997 to
December 31, 2002 for each of the 75 basins. The results for the
two largest basins (11,700 and 15,200 km2) are omitted as basin
average soil moisture estimates over such large areas have little

Table 7
Overall soil moisture and runoff statistics from 75 basins.

Model Statistics

RMSE Bias Abs. error Correlation coefficient r NS

10-day averaged daily runoff (mm/day)
EMC 0.745 0.142 0.435 0.715 0.350
OHD 0.580 0.091 0.322 0.811 0.606

Soil saturation index (0–05 cm layer)
EMC 0.123 0.044 0.100 0.733 0.039
OHD 0.109 �0.032 0.089 0.803 0.241

Soil saturation index (0–25 cm layer)
EMC 0.117 �0.005 0.098 0.738 0.148
OHD 0.111 �0.031 0.092 0.794 0.238

Soil saturation index (25–75 cm layer)
EMC 0.138 �0.092 0.121 0.827 �0.421
OHD 0.128 �0.077 0.110 0.746 �0.221
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Fig. 16. Soil moisture saturation ratio versus climate index for top 0–25 cm soil
layer.
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meaning. For both EMC and OHD models, the RMSE is greater in
the lower soil layer compared to the upper layer. There is a very
slight reduction in RMSE as drainage area increases (left column),
although the number of data points at large basin scales is small.
To counter this imbalance, the SR RMSE values are averaged within
drainage area intervals, with the intervals defined so as to contain
nearly equal numbers of data points (right column). There is a
slightly greater reduction in SR RMSE with drainage area in the
upper soil layer compared to the lower soil layer (right side).

Taken together, the EMC and OHD soil moisture and streamflow
results highlight the similarities and differences between models
that have traditionally been classified as either hydrologic simula-
tion models or land surface models (LSMs). Our results show that
for these basins and time scales, a hydrologic model modified to
compute physically-based soil moisture and temperature (OHD)
was able to produce better simulations of runoff and soil moisture
than was a traditional LSM (EMC).

2.7. Routing experiment results

This final section examines the questions: In what ways do
routing schemes contribute to the simulation success of distrib-
uted models? Can the differences in the rainfall–runoff transforma-
tion process be better understood by running computed runoff
volumes from a variety of distributed models through a common
routing scheme? Our intent was to address the DMIP 1 recommen-
dation to separate the analysis of routing and rainfall runoff tech-

niques (Reed et al., 2004; Lohmann et al., 2004). We chose the OHD
kinematic hillslope and channel routing scheme to represent a
widely-used approach in distributed modeling, with the hope that
our results would have broad applicability. For this experiment,
ARS, EMC, and ARZ-2 provided calibrated hourly time series of
gridded runoff volumes for the BLUO2 (October 10, 2000–March
20, 2001), while ARS also provided simulations for TALO2 (April
25, 2000–July 31, 2000). These periods contained 14 and 4 flood
events of various magnitudes for BLUO2 and TALO2, respectively.
These runoff volume time series were routed through a common
(OHD) calibrated kinematic hillslope and channel routing scheme;
hereafter, we refer to these as the OHD_routed simulations. The
analysis assumed that the parameters of the participants’ cali-
brated models were within reasonable ranges.

For brevity, results are shown only for BLUO2 (Fig. 20a–d). The
graphs show the average values of the %Bias, RMS, %peak flow, and
%peak time errors for 14 BLUO2 events. Each sub-plot shows the
statistics for the participants’ original simulation along side the
statistic from the corresponding OHD-routed simulation.

Looking collectively at the plots, it can be seen that there is not
much difference between the statistics for the original and
OHD_routed simulations. In some cases the statistics from the
OHD_routed simulations are slightly improved and in other cases
they are slightly degraded. The results suggest that for this basin
and these events, errors in modeling the rainfall–runoff process
will not necessarily be reduced by the routing component in a dis-
tributed model.
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3. Conclusions

The key findings of the Oklahoma DMIP 2 experiments are as
follows:

(1) Distributed models, calibrated using basin outlet hydro-
graphs, do a reasonably good job of partitioning precipita-
tion into runoff, evaporation, and losses at basin outlets. In
the cases shown here, this finding is supported by the ability
of the distributed models to generate good streamflow
simulations at interior points. These two findings provide
confidence that distributed models can account for spatial
variability in basin features and precipitation while success-
fully preserving the water balance.

(2) The data used in calibrating models must be stationary and
unbiased.

(3) Two distributed models were able to provide reasonably
good soil moisture simulations; however the streamflow
simulation performance of one model was markedly better
than the other.

(4) Many of the distributed models participating in this study
were able to provide improved hydrograph simulations
compared to lumped models, when both types were cali-
brated. We used two calibrated lumped models to form a
combined benchmark, thereby establishing a more rigorous
basis for drawing conclusions.

(5) The calibration strategies tested in DMIP 2 provided gains in
performance. However, the improvements from calibration
did not greatly impact relative model performance estab-
lished by using a priori parameters.

(6) In several parent and interior basins, some uncalibrated
distributed and lumped models performed better than other
calibrated distributed models. This result highlights the
strength of several model/parameter combinations.

(7) Those lumped and distributed models that performed well
at basin outlet points also, in general, performed well at
interior points having a wide range of drainage areas.

(8) In a limited experiment, errors in modeling the rainfall/run-
off process were not considerably impacted by the type of
routing component used by a distributed model.

Our experiences during this study, and the results reported
here, lead us to conclude that distributed models are indeed mak-
ing gains toward realizing their full, hoped-for potential. While dis-
tributed models provided improved outlet simulations on a limited
basis compared to lumped models, this result should not be con-
sidered as a cause for major concern. It is quite possible that there
are scientifically sound reasons why distributed models may not
be able to outperform lumped models for basin outlet simulations
in all cases (e.g., Pokhrel and Gupta, in press; Smith et al., 2004b).
More important than being able to outperform a calibrated lumped
model, we should probably be placing greater emphasis on the
finding that distributed models are able to produce reasonable
answers at interior points and to do so for the right reasons (e.g.,
interior soil moisture and runoff). The results also imply that at
least for the foreseeable future, operational agencies should con-
sider maintaining currently-used lumped models as they transition
to distributed models for river and water resources forecasting.
Forecasters would then able to look at lumped and distributed
results together and use situational awareness to choose the better
model result for a given event.

Clarke (2008) presents an interesting critique of model compar-
ison experiments, and offers many sound suggestions on the types
of statistical tests that should be performed. He suggests that in
this era of many watershed models, studies need to help practitio-
ners identify models which are ‘‘in some senses better than
others.’’ Several times he mentions the DMIP experiments in his
discussion. While we value his interest in DMIP, we would like to
urge caution in as much as the DMIP studies were designed to pro-
vide a venue for evaluating and improving a class of models rather
than to derive a list of recommended models. Unlike the MOPEX
experiment, which tried to avoid such a ranking by removing the
specific names of models from the discussion of results (Duan
et al., 2006), we have identified the models so that an ongoing
examination of modeling strategies can help to inform model
improvements.

Nonetheless, we do agree with Clarke’s (2008) suggestion that
what (unavoidably) is being tested is the model/developer com-
bination (and not the model itself). It would be enormously
complicated if the model testers were (in general) also required
to learn how to use alternative models (and it would not remove
the fact that the results would then be unavoidably associated
with the strategies employed by the people doing the testing).
Additionally, it would generally be very costly to do so. As a re-
sult, DMIP 1 and 2 were designed as cost-effective venues to
pursue scientific and research-to-operations questions. The
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experiments were open to any and all participants, whether they
developed the model they used or not: some participants in
DMIP 2 were not the model developers (e.g., NEB). Of course,
from a ‘usability’ standpoint there is merit to having models
being tested by those who don’t develop them. However, one
must protect against the fact that, the testers may, due to inex-
perience or lack of knowledge, be unable to garner the most rep-
resentative results possible from a model and thereby provide a
sound, and perhaps more importantly fair, basis for performance
evaluation. It may be helpful to mention here that several of the
DMIP 1 participants used their participation not as an opportu-
nity to ‘recommend’ their models but instead (as intended by
the DMIP organizers) as an opportunity to test and subsequently
improve their models (ARS – Gassman et al., 2007; MIT – Ivanov
et al., 2008; Mascaro et al., 2010; OHD – Koren, 2006). Moreover,
DMIP 2 participants in the western basin experiments are view-
ing those tests as an opportunity to evaluate new model compo-
nents (V. Andreassian, personal communication).

Viewed collectively, the results of DMIP 1 and 2 provide a ro-
bust intercomparison of over 20 models. We believe that the re-
sults herein represent a rigorous assessment of distributed
modeling with operational (versus research) quality data.

4. Recommendations

DMIP 2 was a successful experiment, leading to the enhanced
understanding of general model performance and the impacts of
forcing data errors and calibration. Detailed experiments within a
diagnostic framework such as that proposed by Clark et al.
(2008) are necessary to diagnose specific strengths and to uncover
weaknesses in modeling approaches. Such experiments should be
conducted over many basins covering a broad range of climatic
indices (Andreassian et al., 2009). Along these lines, we suggest
that more comprehensive analyses be performed that use a com-
mon hillslope/channel routing scheme to isolate differences in
rainfall/runoff models.

Distributed models should be viewed as complements rather
than replacements of lumped models in operational forecasting
environments, at least for the foreseeable future. Lumped models
provide a valuable integrated view of the basin outlet response.

DMIP 2 results highlight the importance of a priori parameters
for distributed model simulations. Given this importance, more
efficient approaches need to be developed for a priori parameter
estimation that account for regional properties as well as general
physical laws. Efforts should also include more robust techniques
of parameter estimation with the use of new data sources.

We recommend that additional experiments be conducted to
complement our limited routing tests. These experiments should

consider the recalibration of participants’ rainfall/runoff models
joined with the common routing scheme.

Distributed model calibration is still largely based on ap-
proaches in which the variable a priori parameter field is multiplied
by a basin-wide scalar. Such approaches limit potential improve-
ment gained by calibration of internal basins when climate/physi-
cal properties and their uncertainties vary significantly (e.g.,
comparing CONNR to BLUO2 or applying scalars to sub-basins in
mountainous watersheds). In the mean time, there is a need for
more general calibration approaches that apply spatially-variable
scalars to account for the spatial uncertainty in model parameters
and input data. We support the call for continued cooperation
between the parameter estimation and model development com-
munities (Rosero et al., 2009).

Yet another major need is the testing of models in a ‘pseudo-
forecast environment’ with forecast-quality forcing data and state
updating. Such tests are a logical complement to the process
simulation experiments in DMIP 1. While much work has been
done to evaluate the improvements realized by distributed models
in simulation mode, the NWS also needs to investigate the poten-
tial gains when used for hydrologic forecasting.

Lastly, we repeat the recommendation of Reed et al. (2004) that
experiments are needed to understand the impacts of hydrologic,
model structure, and parametric uncertainty on distributed model
performance.

Acknowledgements

We are very grateful to the many participants and their spon-
soring institutions and agencies for their collaboration on this pro-
ject. In addition, Billy Olsen, Eric Jones, and Bill Lawrence of the
NWS ABRFC provided a great deal of help with data and reviews
of manuscripts. Brad Illston of the Oklahoma Climatological Survey
provided help in interpreting the Oklahoma Mesonet soil moisture
observations. Todd Hallihan of Oklahoma State University provided
his insights into the hydrogeology of the Blue River basin. Lastly,
we are grateful to the reviewers of this manuscript for their bene-
ficial comments.

Appendix A

Non-OHD DMIP 2 coauthors and affiliations (see Table A-1).

Appendix B

Parameterization and calibration strategies (see Table B-1).

Table A-1
Non-OHD DMIP 2 coauthors and their affiliations.

CEMAGREF, France (CEM) Vazken Andreassian, Julien Lerat, Cecile Loumagne, Charles Perrin, Pierre Ribstein
U. Arizona, Tucson, Arizona (AZ1, AZ2) Hoshin V. Gupta, Koray K. Yilmaz, Prafulla Pokhrel, Thorsten Wagener
DHI Water and Environment, Horsholm, Denmark (DH1, DH2) Michael Butts, Keiko Yamagata
U. California at Irvine, Irvine, California (UCI) Soroosh Sorooshian, Behnaz Khakbaz, Alireza Behrangi, Kuolin Hsu, Bisher Imam
Vrije U. of Brussels, Belgium (VUB) Florimond De Smedt, Ali Safari, Mohsen Tavakoli
Wuhan University, Wuhan China (WHU) Lan Li, Xin Wang, Jian Wu, Chao Yang Mengfei Yang, Zhongbo Yu
U. Alberta Edmonton, Canada (UAE) Thian Gan, Zahidul Islam
U. Oklahoma, Norman, Oklahoma (UOK) Baxter Vieux, Jonathan Looper
I. M. System Group and NOAA/NCEP/EMC (EMC) Youlong Xia, Kenneth Mitchell, Michael Ek
Imperial College of London (ICL) Neil McIntyre, Barbara Orellana
U. Illinois, Urbana-Champaign, Illinois (ILL) Murugesu Sivapalan, Hongyi Li, Fuqiang Tian
U. Nebraska at Lincoln, Nebraska (NEB) Jae Ryu (Now at University of Idaho)
USDA Agricultural Research Service, Temple, Texas (ARS) Jeff Arnold
USDA Agricultural Research Service, Corvalis, Oregon (ARS) Gerald Whittaker, Remegio Confesor
Blackland Research Center, Temple, Texas (ARS) Mauro Di Luzio
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Table B-1
Parameterization and calibration strategies for the DMIP 2 participants.

Partici-
pant

Parameterization Calibration

OHD Gridded a priori SAC-SMA parameters derived from soil texture (Anderson et al., 2006; Koren et al., 2000). Gridded
routing parameters derived from observed USGS data and geomorphologic relationships (Koren et al., 2003b; 2004)

Start with a priori parameters. Revise a priori parameters using lumped calibrated
parameters (derived using procedures in Smith et al., 2003): scale gridded a priori values by
ratio of the SAC-SMA parameter value from the lumped calibration to the average parameter
value from the a priori grid. Then use scalar multipliers to uniformly adjust each parameter
while maintaining spatial variability. Scalars are calibrated manually and/or automatically.
Automatic calibration uses a multi-time scale objective function (Kuzmin et al., 2008)

UCI Our semi-distributed model has three main components: (1) SAC-SMA as the water balance component for each sub-
basin; (2) Overland flow routing; and (3) River channel routing

Semi-Lumped calibration (SL) strategy (Ajami et al., 2004) used to simulate streamflow at
the outlet and interior points. Distributed precipitation forcing was applied at each sub-
basin. Identical SAC-SMA model parameters used at all sub-basins and model calibration
optimized a single parameter set in the distributed model structure. Only the observed
streamflow at the basin outlet during calibration period was available to assess the goodness
of fit for the tested calibration strategies, SL calibration scenario, which gave the best
performance during calibration period among the other calibration strategies, was selected.
The best performance of our model in terms of streamflow simulation at the outlet as well as
interior points is obtained when the optimal parameter set is estimated, through calibration
of the lumped SAC-SMA model (entire watershed) and then applied identically to all sub-
basins in the distributed model configuration. The results of this calibration scenario is
discussed in Khakbaz et al. (2011, this issue)

13 Major parameters of SAC-SMA were defined via calibration of the model while the parameters of overland flow
and channel routing components were obtained without calibration. The overland flow routing parameters were
defined through GIS processing of the selected basin. The parameters of channel routing component (e.g. Manning
roughness and cross section properties) were obtained from previous study on the Illinois River basin at Watts
(Ajami et al., 2004)

NEB Hydrologic parameters of HSPF are determined by watershed delineation processes (e.g. hypsometric curve) built in
BASINS; Soil and land use parameters are derived from posterior parameterization based on spatial analysis to
facilitate partitioning of the watershed into land segments and stream network (EPA BASINS, 2001; EPA HSPF, 1970)

Annual water balance was manually adjusted, if needed, and then automatic calibration
software, the Parameter Estimation (PEST), was utilized to calibrate hydrologic simulation.
PEST is a model-independent parameter estimator. The search algorithm built in PEST
implements a robust variant of the Gauss–Marquardt–Leyenberg method (GML) of
parameter estimation by maintaining a continuous relationship between model parameters
and model outputs (Doherty and Johnston, 2003; Marquardt, 1963)

EMC Parameterizations of Noah hydrologic and soil physics are described in Chen et al. (1996) and Ek et al. (2003). Noah
uses parameterization of snowpack and frozen ground from Koren et al. (1999) and runoff parameterization from
Schaake et al. (1996). Saturated hydraulic conductivity Ksat and hydrologic conductivity Kdt are taken from MOPEX
(Duan et al., 2006). Routing model from Lohmann et al. (1998) is used

For the calibration period, manually adjust two soil parameters (Ksat and Kdt) values to
minimize root mean square error between observed and simulated streamflow for each
basin. Noah default values are Kdt = 3.0/Ksat; Ksat is a table used in the Noah and it depends
on soil types. The Ksat and Kdt for MOPEX experiment (Duan et al., 2006) are expressed as:
Ksat = 5.5Ksat (default), Kdt = 2.59–0.044Ksat. In DMIP2 experiment, use Ksat = bKsat
(default) and Kdt = 2.59–0.044Ksat. Here b is a calibrating parameter. The value of b is
calibrated for each basin using a manual method to achieve the minimum of root mean
square error between observed and simulated annual mean streamflow

ARS Segmentation and parameterization of the sub-watersheds using digital terrain data and geomorphologic
relationships. Sub-watershed partitioned in Hydrologic Response Units (HRUs). HRU’s parameters derived from soil
and land use data information (Di Luzio et al., 2004)

From a priori parameters and SWAT documentation, set reasonable limits on the range of
each variable to be calibrated. Initialize the calibration with a random draw from the range
of each variable. The calibration procedure is an application of the non-dominated sorted
genetic algorithm (NSGAII, Deb et al., 2002) to two objectives. The objectives are defined as
the root mean square error (RMSE) of event driven flow predictions and the RMSE of base
flow predictions for the watershed. The procedure is implemented to run on a parallel
computer (Confesor and Whittaker, 2007). The parameters are free to vary within the
bounds without regard to spatial patterns

Precipitation input records defined as area-weighted average over each sub-watershed (Di Luzio and Arnold, 2004)

CEM Lumped parameterization Calibrated simulations
Model GR4J uses four parameters (Perrin et al., 2003): On gauged points, calibration is performed in three steps combining global and local

optimization (Perrin et al., 2008):
– Soil moisture accounting reservoir capacity (mm)
– Intensity of interwatershed groundwater flows (gain/losses function) (mm) 1. Parameter space is regularly sampled by selecting 3 values for each of the four GR4J

parameters and producing all possible combinations of the different parameters values.
These values are given by the quantiles 30%, 50% and 70% of the distribution of GR4J

(continued on next page)
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Table B-1 (continued)

Partici-
pant

Parameterization Calibration

parameters after a calibration on 1054 catchments in France
– Routing store capacity (mm) 2. The parameter set having the highest Nash–Sutcliffe efficiency is selected among the 181

sets as a starting point for step 3
– Time base of the unit hydrograph (h) 3. Local optimization based on a steepest descent algorithm is then applied and leads to the

final parameter set
On interior points, model parameters are derived from downstream gaged catchment
parameters by the following procedure: The first three parameters are set identical to those
of the downstream catchment (SMA store capacity, intensity of gain/losses and routing
store). The fourth one (time base of the hydrograph) is calculated by the following regression
formula obtained on 1054 catchments in France (Oudin et al., 2008):

TB ¼ 0:25þ 63� Surf
Ra2 �StdðRh>0Þ

� �0:313

where TB is the time base of the unit hydrograph (h), Surf is the drainage area in km2, Ra is
the mean annual rainfall in mm/year, and Std(Rh > 0) is the standard deviation of strictly
positive hourly rainfall in mm/h
Uncalibrated simulations
The following set of parameters is applied (mean values of the five parameters sets obtained
after calibration on the five DMIP gaged points): SMA store capacity of 300 mm, Inter-
watershed Groundwater Flows intensity of �0.3 mm, Routing store capacity of 60 mm, Time
base of the hydrograph of 20 h

UAE Parameters can be grouped as Vegetation, Soil and Channel (Biftu and Gan, 2001; Biftu and Gan, 2004) Four model calibration parameters viz. as exponential decay parameter of saturated
hydraulic conductivity, Manning’s roughness coefficient for soil and vegetation, mean cross
sectional top width and Manning’s roughness coefficient for channel

Vegetation: LAI derived from monthly greenness fraction data, Initial canopy storage derived from percent of canopy
capacity, other parameter values as attenuation coefficient taken from literature (Kalinga and Gan, 2006; Biftu and
Gan, 2001)
Soil: Soil types derived from the DMIP soil data, Soil hydraulic properties derived from Rawls and Brakensiek (1985),
roughness values initially estimated and then calibrated

At first the exponential decay parameter (f) was set in order to provide sufficient base flows
as well as to properly model the seasonal variation of local ground water table at sub-basin
scale. Starting with some initial values following Beven’s (1982) suggestions the value of f
was set by observing the ground water table of sub-basins as well as the observed and
simulated discharge. Then Manning’s roughness coefficient for soil and vegetation was
calibrated to refine the response function for different sub-basins

Channel: The mean cross sectional top width and Manning’s roughness coefficient are calibrated Finally starting with some estimated value from field observation and previous study, the
Manning’s roughness parameter for all channels was refined by matching the lag time and
magnitude of the simulated and observed peak discharge. However as the Muskingum–
Cunge method for channel routing is relatively insensitive to the mean top width of the
water surfaces at channel reaches (Biftu and Gan, 2001); in calibration they remain equal to
the cross-sectional measurement database of DMIP 2

UOK The Green and Ampt soil parameter maps are determined from the Rawls and Brakenseik relationships (Rawls et al.
1983a, b). Manning coefficient maps derived by relating Land Use and Land Cover (LULC) maps to the corresponding
roughness coefficients (Vieux, 2004)

First, separate events by saturation excess versus infiltration excess. Plot observed and
simulated peaks and volumes for events to identify saturation excess (typically under
predicted) or infiltration excess (typically over predicted). Identify events after extended
moisture deficits (e.g. drought) when initial runoff is driven by infiltration excess. The
scatter plots provide an insight due to the appearance of two trends between observed and
simulated runoff

Rating curves from USGS gauging stations are used where available. Trapezoidal channel cross-sections are used
where cross-sections are surveyed or rating curves exist. Floodplain storage is modeled in the lower reaches of the
Blue and Illinois using cross sections extracted from 10 meter USGS DEM. For trapezoidal channel cells, geomorphic
relationships between channel width and drainage area are estimated from National Agriculture Imagery Program
(NAIP) orthophotos. The geomorphic relationship is used to assign base width to the channel network based on
drainage area

Next, objective functions for event volume and event peak were created. The objective
function for volume was the root mean square error between simulated and observed runoff
volume. The objective function for peak was the root mean square error between the
simulated and observed peak flow rate. Using the objective function for volume, first the soil
depth and hydraulic conductivity were calibrated. Finally the objective function for peak
was used to calibrate between channel slope and roughness

Baseflow separation is performed on the observed hydrographs using the PART software by the USGS. The PART
program searches for days that meet a daily antecedent streamflow recession of 0.1 log cycles. Days that meet this
requirement are then used to estimate the baseflow during the storm flow periods

Finally, evaluate Nash–Sutcliffe efficiency for each set of parameters. The Nash–Sutcliffe
efficiency provides a quantification for matching the distributions of observed to simulated
streamflow. The Nash–Sutcliffe efficiency metric is very sensitive to differences in shape
between the observed and simulated hydrographs. Ultimately the Nash –Sutcliffe efficiency
metric was used to assess the calibrated results
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Table B-1 (continued)

Partici-
pant

Parameterization Calibration

VUB Gridded parameters are derived from soil texture, land use and topography, using GIS. Global model parameters are
time and space invariant and are either adjustment coefficients or empirical constants that need to be preset, or
calibrated if observed streamflow data are available

Start with a priori global model parameters, possibly adjusted by manual calibration.
Optimize global model parameters using PEST program (Doherty and Johnston, 2003)
minimizing the sum of squared differences between observed and calculated flow values

ILL Geomorphologic parameters derived from DEM, soil parameters derived from STATSGO, vegetation parameters
derived from MODIS/Terra production, Manning roughness coefficients are picked up from literature according to
landscape properties, closure parameters representing spatial heterogeneity are a priori set to 1.0 which means there
is no significant spatial variability. All parameters are areal averaged values at the REW scale

The same set of parameters describing key processes are applied to all REWs. We start with a
priori parameters, geomorphologic parameters, vegetation parameters and most soil
parameters are fixed during calibration, while hydraulic conductivity, Manning roughness
and closure parameters are calibrated manually within restricted range based on a set of
objective functions including Nash–Sutcliffe coefficient, IVF(Index of Volumetric Fit), regime
curve, etc. (Tian et al., 2008). The strategy is to first calibrate the routing parameters, then
baseflow parameters, and finally calibrate overland runoff parameters

Univ.
AZ-1

Gridded SAC-SMA parameters and lumped routing parameters for Muskingum scheme. Initial a priori SAC-SMA
parameters derived from soil texture (Koren et al., 2003a). Both a priori fields (11 pars) and routing parameters are
then adjusted via Multiple-Criteria calibration using spatial regularization

Step (1) Start with a priori parameters
Step (2) Devise 11 regularization equations to reduce parameter dimensionality using
parameter-to-watershed physical properties and parameter-to-parameter relationships.
This results in 35 super-parameters to be calibrated (11 par_fields � 3 reg_pars/field + 2
routing_pars), which when changed act to adjust overall properties of the parameter
fields while maintaining the spatial patterns of variability given by the a priori param-
eter fields. See Pokhrel et al. (2008) for details
Step 3) Adjust the super-parameters using a multi-criteria approach that simultaneously
minimizes MSE and log-MSE criteria (Pokhrel et al., 2010). This gives a Pareto-optimal
(PO) solution set
Step 4) Select the Pareto-solution that overall gives best monthly flow volume bias

Univ.
AZ-2

Gridded a priori SAC-SMA parameters derived from soil texture (Koren et al., 2000). Gridded routing parameters
derived from observed USGS data and geomorphologic relationships (Koren et al., 2003b; Koren et al., 2004).

Step (1) Start with a priori parameter fields
Step (2) Consider three primary behavioral functions of any watershed system (overall
water balance, vertical redistribution, and temporal redistribution), and identify ‘‘signa-
ture patterns’’ of behavior that are related to the primary watershed functions and
detectable using observed precipitation–runoff data
Step (3) Formulate quantitative representations of these patterns in the form of ‘‘signa-
ture measures’’ that summarize the relevant and useful diagnostic information present
in the data. The signature measures can be easily extracted from the flow duration curve
and a simplified watershed lag-time calculation. See Yilmaz et al. (2008) for details
Step (4) Perform sensitivity analysis to detect and group together model parameters
demonstrably related to each signature measure
Step (5) Use Monte Carlo parameter sampling and a two-step, semi-automated con-
straining approach to adjust the 11 SAC-SMA parameter fields and 1 hydraulic routing
parameter field to improve the signature measures. For each parameter field a non-lin-
ear transformation having a single parameter is used to adjust the parameter values
away from their a priori estimates while preserving the spatial patterns. See Yilmaz
et al. (2008)
Step (6) Select the parameter set that gives the best overall signature measure perfor-
mance improvement
Step (7) Evaluate performance on an independent evaluation period

WHU Gridded a priori infiltration parameters derived from soil texture (Chow et al., 1988). Gridded routing parameters
derived from observed USGS data and inverse problem (Li, 2001a,b)

The partly parameters using scale gridded spatial values by geomorphologic relationships of
the NDVI, landuse and soil texture data from USGS
The second parameters start with a priori parameters. Revise a priori parameters using partly
lumped calibrated parameters (derived using procedures in Li and Zhong, 2003): Automatic
calibration uses objective function (Li and Zhong, 2003)
Last parameters value of all flow from derived from observed USGS data and inverse problem
(Li, 2001a,b)

(continued on next page)
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Table B-1 (continued)

Partici-
pant

Parameterization Calibration

ICL Uncalibrated simulations: parameter values per subcatchments (9) derived from relationships similar to Atkinson
et al. (2002); Dooge (1974) and Fernandez et al. (2000)

Start with calibrated lumped parameter values

Test of scalar calibration multipliers over lumped parameter estimates and a priori
parameter estimates, using uniform random sampling and MOSCEM
Calibration of parameter values using uniform sampling and (1) the same model parameters
in all subcatchments, i.e., distributed inputs (2) different model parameters among
subcatchments

DHI 1
MIKE
11

The channel component of MIKE 11 uses different levels of approximation to the St Venant equations and uses
physically-based parameters; either routing parameters or resistance coefficients and cross section geometry (Havnø
et al., 1995). The rainfall–runoff component of MIKE 11 is conceptual and generally requires calibration. Madsen
et al. (2002), demonstrate an expert system approach to minimize the number of calibration parameters

Multi-objective automatic calibration as applied in DMIP 1 (Butts et al., 2004). The
methodology is based on the SCE methods (Madsen, 2000) and is provided as a generic tool
for MIKE software (Madsen, 2000, 2003). The user selects the multiple objectives, starting
point and parameter bounds and the tool includes sensitivity and uncertainty analyses. The
same tool is (AUTOCAL) used in both MIKE 11 and MIKE SHE

DHI 2
MIKE
SHE

The rainfall–runoff process representations in MIKE SHE can be either conceptual or physics-based (Butts et al.,
2004; Graham and Butts, 2006). In DMIP 2, conceptual representations were used which requires calibration. The
channel component of MIKE SHE is (identical to) the MIKE 11 river component – see above

Multi-objective automatic calibration as applied in DMIP 1 (Butts et al. 2004). The
methodology is based on the SCE methods (Madsen, 2000) and is provided as a generic tool
for MIKE software (Madsen, 2000, 2003). The user selects the multiple objectives, starting
point and parameter bounds and the tool includes sensitivity and uncertainty analyses. The
same tool is (AUTOCAL) used in both MIKE 11 and MIKE SHE
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Appendix C

Event-based statistics for parent basins and interior points (see Figs. C-1–C-4).
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Fig. C-1. Event-based statistics for calibrated models at TIFM7 and the interior points LANAG and POWEL.

0 10 20 30 40 50 60 70 80
Event Absolute % Peak Error

ELMSP (for TALO2)

15

20

25

30

35

40

45

20 40 60 80 100
Event Absolute % Peak Error

E
ve

nt
 A

bs
ol

ut
e 

%
 R

un
of

f E
rr

or

LMP

ARS

CEM

EMC

NEB

OHD

VUB

ILL

UOK

(calibrated, all periods)

TALO2 
(calibrated, all periods)

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60 70 80 90
Event Absolute % Peak Errror

E
ve

nt
 A

bs
ol

ut
e 

%
 R

un
of

f E
rr

or

LMP

ARS

CEM

EMC

NEB

OHD

VUB

ILL

UOK

OHD_1

SLOA4
(for TALO2- calibrated,  all periods)

0

5

10

15

20

25

30

35

E
ve

nt
 A

bs
ol

ut
e 

%
 R

un
of

f E
rr

or

LMP

ARS

CEM

EMC

NEB

OHD

VUB

ILL

UOK

SAVOY 
 (for TALO2 -calibrated, all periods)

15

20

25

30

35

40

45

30 35 40 45 50 55 60 65 70 75 80
Event Absolute % Peak Error

E
ve

nt
 A

bs
ol

ut
e 

%
 R

un
of

f E
rr

or

LMP

ARS

CEM
EMC

NEB

OHD

VUB

ILL
UOK

OHD_1

Fig. C-2. Event-based statistics for calibrated models at TALO2 and the interior points SAVOY, SLOA4, and ELMSP.
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Fig. C-3. Event-based statistics for calibrated models at TALO2 and the interior points CAVES, WSILO, KNSO2, and SPRIN.

20 30 40 50 60 70 80 90 100

Event Absolute % Peak Error
30 40 50 60 70 80 90 100 110

Event Absolute % Peak Error

30 40 50 60 70 80 90 100

Event Absolute % Peak Error
3020 40 50 60 70 80 90 100 110

Event Absolute % Peak Error

SLOA4 
(Independent headwater)

0

10

20

30

40

50

60

70

80

E
ve

nt
 A

bs
ol

ut
e 

%
 R

un
of

f E
rr

or

LMP

ARS

CEM

EMC

NEB

OHD

VUB

ICL

UCI

CAVES(for SLOA4)

20

30

40

50

60

70

80

90

100

E
ve

nt
 A

bs
ol

ut
e 

%
 R

un
of

f E
rr

or

LMP

ARS

CEM

EMC

NEB

OHD

VUB

ICL

UCI

ELMSP  (for SLOA4)

10

20

30

40

50

60

70

80

90

E
ve

nt
 A

bs
ol

ut
e 

%
 R

un
of

f E
rr

or LMP

ARS

CEM

EMC

NEB

OHD

VUB

ICL

UCI

SAVOY(for SLOA4)

0

10

20

30

40

50

60

70

80

90

100

E
ve

nt
 A

bs
ol

ut
e 

%
 R

un
of

f E
rr

or

LMP

ARS

CEM

EMC

NEB

OHD

VUB

ICL

UCI

Fig. C-4. Event-based statistics for calibrated models at SLOA4 and the interior points CAVES, SAVOY, and ELMSP.
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Appendix D

Change in %Bias and rmod due to calibration at basin outlet (see Figs. D-1–D-4).
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Fig. D-1. Change in %Bias and rmod via calibration for SLOA4 and interior point SAVOY.
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Fig. D-2. Change in %Bias and rmod via calibration for SLOA4 interior points ELMSP and CAVES.

M.B. Smith et al. / Journal of Hydrology 418–419 (2012) 17–48 43



BLUO2 
(all periods)

-10

0

10

20

30

40

50

60

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B
ia

s,
 %

ARS AZ1 AZ2 CEM

ILL LMP NEB OHD

UAE UOK VUB WHU

EMC DH1 DH2

(0.71, 90.6)

(0.43, -19.4)

CONNR

-60

-40

-20

0

20

40

60

80

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
rmodrmod

B
ia

s,
 %

(all periods)

Fig. D-4. Change in %Bias and rmod via calibration for BLUO2 and interior point CONNR.

rmod

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
rmod

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

rmod

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 TIFM7 (all periods)

-30

-20

-10

0

10

20

30

40

B
ia

s,
 %

ARS

CEM

EMC

LMP

NEB

OHD

VUB POWEL

-40

-20

0

20

40

60

80

100

120

140

B
ia

s,
 %

ARS

CEM

EMC

LMP

NEB

OHD

VUB

zero

(all periods) 

LANAG (all periods)

-40

-30

-20

-10

0

10

20

30

40

50

B
ia

s,
 %

ARS

CEM

EMC

LMP

NEB

OHD

VUB

zero

Fig. D-3. Change in %Bias and rmod via calibration for TIFM7 and interior points LANAG and POWEL.
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Appendix E

VUB soil moisture simulation at the Westville, Oklahoma Mesonet site (see Fig. E-1).
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